![]() 图10:对基于氮化镓及基于MOSFET器件的无线电源电路板的功率损耗进行微细分析,两块电路板工作在22 V电源电压、6.639 MHz频率及23.6Ω负载条件下 在22 V电源电压及15 W功率的负载测量而推论出: 1)整套的感应线圈的效率为87.3% 2)基于氮化镓场效应晶体管的系统效率为82.9% 3)基于MOSFET器件的系统效率为78.8% 4)整流器的效率为93.6% 总结 本章展示了基于电感的D类无线电源系统可以工作在6.78 MHz的ISM频带下。由于实验的限制,我们展示器件工作在6.639 MHz频率下,及对基于氮化镓场效应晶体管和基于等效MOSFET并使用相同线圈及整流器的无线电源系统进行比较。在15 W负载功率条件下,与基于MOSFET 器件的系统相比,基于氮化镓场效应晶体管的系统在整体效率方面高出3%。 在改善放大器的效率方面,使用氮化镓场效应晶体管的功率放大器比使用MOSFET的放大器的效率高出4%。(功耗减少了24%)。 一个工作在6.78 MHz ISM频带的无线电源系统可以在高频下工作的主要因素是给整流器固定电阻值,实际上,我们可在整流器加入一个降压转换器并把输入编程,使之如固定电阻器般工作,及同时根据负载的要求调较输出电压。 对这类无线系统而言,线圈之间要对齐及具固定间距也是重要的。漏电感的变化要不变得过大而不能补偿工作在ISM频带所要求的严格频宽。 最后,请留意用作这次评估的氮化镓场效应晶体管对于这种用于5 W功率级别的应用来说是过大。在写本章时,我们所选的晶体管是宜普公司产品系列中尺寸最小的产品。虽然所测试的器件可推动15 W功率应用,但用于低功率级别的应用可采用尺寸较小、额定值为30 V的器件来提升效率,或可提高电源电压,使基于氮化镓场效应晶体管的无线系统与基于MOSFET器件的系统相比,可实现更高输出功率。 参考资料 [1] “Wireless Power Transfer System via Magnetic Resonant Coupling at Restricted Frequency Range”, Teck Chuan Beh, Takehiro Imura, Masaki Kato, Yoichi Hori, Annual Conference of I.E.E. of Japan, Industry Applications Society Aug. 2010. [2] “Wireless Power Receiver IC Complements Existing Transmitter”, Sam Davis, Power Electronics Technology magazine, July 2011. [3] “System Description Wireless Power Transfer”, Vol. 1, ver. 1.0.3, Sept. 2011. [4] “Mid-range Wireless Energy Transfer Using Inductive Resonance for Wireless Sensors”, Shahrzad Jalali Mazlouman, Alireza Mahanfar, Bozena Kaminska, IEEE International Conference on Computer Design ICCD 4-7 Oct 2009. pp 517 – 522 [5] Witricty Corp. coil set part numbers 190-000037-01 and 190-000038-01, www.witricity.com [6] EPC2014 datasheet, http://epc-co.com/epc/Products/eGaNFETs/EPC2014.aspx [7] Wakefield Engineering thermal interface material P/N 173-7-1212A, http://www.wakefield.com [8] http://en.wikipedia.org/wiki/Electronic_amplifier [9] “A Practical Class S Power Amplifier for High Frequency Transmitters”, John Dooley and Ronan Farrell, Royal Irish Academy Colloquium on Emerging Trends in Wireless Communications 2008, 23rd & 24th April 2008, Dublin, Ireland. [10] LM5113 datasheet, Texas Instruments, http://www.ti.com/product/lm5113 [11] 200A/50MHz Rogowski Coil Current probe, Athena Energy Corp current probe,www.athenaenergycorp.com [12] http://en.wikipedia.org/wiki/ISM_band [13] BSZ130N03LS_G datasheet, Infineon, www.infineon.com [14] ATS-54150K-C2-R0 datasheet, Advanced Thermal Solutions, www.qats.com [15] “eGaN FET- Silicon Power Shoot-Out Volume 8: Envelope Tracking”, Johan Strydom, Power Electronics Technology, May 2012, http://epc-co.com/epc/DesignSupportbr/Applications/EnvelopeTracking.aspx [16] “Wireless Power System Design Component And Magnetics Selection”, Kalyan Siddabattula, Texas Instruments presentation on wireless technology, http://e2e.ti.com/support/power_ ... gallery/526153.aspx [17] “Wireless Power Transfer Enabling the Mobile Charging Ecosystem”, by Qualcomm, Presented at the Darnell Power Forum, Sept. 2011 |
|关于本站|小黑屋|Archiver|手机版|无线电爱好网
( 粤ICP备14010847号 )
GMT+8, 2014-4-7 09:56 , Processed in 0.098900 second(s), 28 queries .
Powered by Discuz! X3.1 Licensed
© 2001-2013 Comsenz Inc.