效率和损耗
仿真的第一个结果和最具代表性的结果如图3和4所示。根据不同的n1/n2配置,分别在800 V、666.7 V和571 V次级工作电压下提供峰值效率。在此值得注意的是,在340 V至830 V的VSEC工作电压范围内,所有评估的匝数比都可实现98%的峰值效率(但不包括电感和变压器的磁芯损耗)。
然而,随着VSEC向低端(200 V)和高端(1000 V)移动,不同n1/n2比值之间的差异会变得更明显。实际VSEC值偏离最佳点越远,效率就越差(图3中曲线图的左右两端)。有趣的是,虽然增加n1/n2会显著增加VSEC > VSEC,OPTIM时的总功率损耗(图4的右端),但减小n1/n2并不会对VSEC < VSEC,OPTIM时的功率损耗产生同等明显的影响(图4的左端)。
尽管增加n1/n2比值会使VSEC < VSEC,OPTIM时的效率提高(图3左端),但差异并不像VSEC > VSEC,OPTIM时那样显著(图3右端)。因此,似乎减小n1/n2比值可能会导致整体性能的提高,不过情况并非总是如此,这取决于在整个VSEC工作范围内要确保的最低效率。
图3:随VSEC电压和变压器不同的n1/n2比值,DAB效率的变化。不包括谐振电感和变压器的磁芯损耗。VDC-LINK = 800 V,LM = 720 µH。 图4:随VSEC电压和变压器不同的n1/n2比值,DAB 功率损耗的变化。不包括谐振电感和变压器的磁芯损耗。VDC-LINK = 800 V,LM = 720 µH。 |