阎金光表示,随着USB PD3.1规格的推出,适配器电源功率越来越大。当输入功率超过75W时,必须满足功率因数要求。一般是在电源前级加一个PFC校正电路,使交流输入端的电流相位完全跟踪电压。 通常,人们希望交流电网两端接的负载是纯电阻,其特性在于输入电压和输入电流的相位总是相同,但如果负载是电容性或电感性这样的电抗性负载,电压和电流就会有相位差。电压乘以电流等于功率,如果电压和电流相位不同,乘积就会变小,负载实际使用到的有功功率就非常低。过多的功率会在电源供电端传输线上损耗掉。所以,功率比较大时要求有功率因数校正功能,因为如果功率因数比较低,电网上看到的功率是100W,而实际只能用80W。这时功率因数是0.8,所以有20W线上损耗也要付电费。 以前做单级电源无散热片设计时,AC进来直接由电源变换出DC,实际效率达到95%才能实现无散热片设计,以保证电源的高功率密度和小体积。但现在输出功率增大了,输入功率也会增加。在有功率因数较正的情况下,电源内部是一个两级结构,前面一个PFC前级,后面一个DC-DC变换级。保证效率大于94%才能实现无散热片设计,其中的元件数目会更多,两级电源散热也更加难以处理。 面临挑战是:随着功率增加需要有功率因数校正,原来的单级方案必须用两级来实现;而两级效率又不能太低,否则总体效率会下降,电源发热严重。因此,一定要把两级电源设计的前级PFC效率做高,同时让DC-DC变换效率尽量高,才能保证整体散热满足温升要求。
阎金光介绍说,为了应对两级电源效率的挑战,PI推出了两款产品,一款是HiperPFS-5,内部集成了氮化镓的功率开关管,每一级效率都保证大于98%。其前级是功率因数校正,可保证输入电流和输入电压同相。前级功率变换的输出通常是一个高压直流,在400V左右,经过后级二次变换成所需的输出电压。第二级用到了PI的第二款芯片组产品,其中一个芯片内部集成了LLC拓扑中的上管和下管,采用的是600V耐压的FREDFET MOS管,而不是氮化镓开关,因为LLC应用频率并不太高,加上母线高压,电流比较小,也体现不出氮化镓低导通电阻的优势。而FREFET的体二极管良好的反向恢复特性,也利于优化LLC的性能。 LLC工作时其功率开关管半桥以谐振方式工作,两个MOS管都能以零电压模式开关(ZVS),可以将开通损耗减小到零,即器件两端电压为零时才开始开通开关管,电流才开始上升。这种工作方式中开通损耗的降低,就可以把两个功率开关管封在一个IC中,仅利用PCB进行散热。 第二个IC是次级控制器,跨接在二次电源初级和次级之间,通过FluxLink™ 将次级的反馈信号传送给功率变换器件。两个芯片一定要搭配工作。这样才能保证初级半桥开关管和次级输出同步整流管的开关时序最优化。 他解释说,整体电源架构有三个芯片,实际上是两套IC,一个是功能因数校正,另一个是LLC芯片组。由于已将很多消耗功率的功能都集成到IC内部,总体空载功耗可以小于40mW,对一些适配器应用非常有帮助,可以在元件数目很少的情况下提升功率密度,同时减少不必要的功耗,使待机功耗最低。
|