英飞凌工业半导体 英飞凌科技股份公司(德国瓦尔施泰因)
英飞凌率先发现了动态工作引起的长期应力下VGS(th)的漂移现象,并提出了工作栅极电压区域的建议,旨在最大限度地减少使用寿命内的漂移。[1]。 经过不断研究和持续优化,现在,全新推出的CoolSiC™ MOSFET M1H在VGS(th)稳定性方面有了显著改善,几乎所有情况下的漂移效应影响,都可以忽略不计。
近期的研究结果表明,与相应的静态栅极应力测试(DC-HTGS)相比,包括V_(GS(off))<0V在内的正负电源驱动,交流AC栅极应力引起的阈值电压漂移更高,这一发现为SiC MOSFET器件的可靠性带来了新视角[1,3]。 图1显示了交流(AC)和直流(DC)应力条件下的不同影响。VGS(th) (ΔVth)的数据变化是使用数据表[1]中的最大条件得出的。 图中可以看到两个不同的斜率,第一个对应的是典型的类似直流DC的漂移行为(“直流拟合”);第二个更大的斜率对应的是正负电源的交流AC应力效应(“交流拟合”),也称栅极开关不稳定性(GSI)。
VGS,(on)=20V;VGS(off)=−10V; Tvj,max=150°C and f=500kHz.[1]
我们的结论是:开关周次数超过10⁸的应力条件下,交流漂移是造成应力的主要原因;开关周次数较少时,直流漂移是造成应力的主要原因。 数据显示,开关应力会导致VGS(th)随时间缓慢增加。由于阈值电压VGS(th)增加,可以观察到沟道电阻(Rch)的增加。这种现象由等式(1)描述,式中,L是沟道长度,W是沟道宽度,μn是电子迁移率,Cox是栅极氧化层电容,VGS(on)是导通状态栅极电压,VGS(th)是器件的阈值电压[1]。
因此,VGS(th)的增加会导致沟道电阻略有提高,从而造成RDS(on)提高,以及久而久之产生的导通损耗。 GSS测试涵盖了所有重要的漂移现象,包括在器件正常工作期间发生的漂移现象。除了缺失的负载电流(它本身不会改变我们所观察到的漂移行为)[3],我们通过保持与典型应用条件相似的栅极开关特性(例如,电压斜率),尽可能地模拟应用(参见图2)[1]。为了涵盖在实际SiC MOSFET应用中非常常见的栅极信号过冲和下冲的潜在影响,我们通过在数据表所允许的最大栅极电压和最大静态结温(Tvj,op)下施加应力,来实现最坏情况。
典型的GSS栅源应力信号。[1]
在最坏情况下进行测试,可以让客户确信自己能够在整个规格范围内使用该器件,而不会超过漂移极限。因此,这种方法保证了器件的出色可靠性,同时也便于安全裕度的计算。 除了VGS(th),栅极漏电流IGSS等其他参数也得到了测量,并在被测硬件上保持一致[1]。 最坏情况的寿命终止漂移评估 及其对应用的影响 基于该模型,我们建立了一种评估阈值电压漂移的方法,使用最坏情况寿命终止曲线(EoAP)来计算相对R(DS(on))漂移。在应用中,以任意频率运行一定时间,我们可以计算出至EoAP之前的开关周期总数(NCycle)。然后,使用NCycle读出相对RDS(on)漂移。 周期数取决于开关频率和工作时间。典型的硬开关工业应用(例如,太阳能组串逆变器)使用16-50 kHz的开关频率。使用谐振拓扑的逆变器的开关速度通常超过100kHz。这些应用的目标寿命通常在10-20年,而实际工作时间通常在50%-100%。
以下示例提供了一个样品评估:
导通电压为18V时,预计25°C时的RDS(on)的相对变化小于6%,175°C时小于3%,见图3(图3中的绿点)。
图4示例基于最近推出的EasyPACK™ FS55MR12W1M1H_B11(DC-AC逆变器中的三相逆变桥配置),说明了RDS(on)预测变化的影响[4]。这个例子是在损耗分布中,传导损耗(Pcon)占比很大的应用。Tvj,op从最初的148°C到150°C的最坏情况EoAP仅上升2K。结果证明,哪怕是使用了20年后,RDS(on)的轻微变化导致的Tvj,op增加也可以忽略不计。 图4.最坏情况EoL评估:Vdc:800V,Irms:18A,fout:50Hz,fsw:50kHz,cos(φ):1,Th=80°C。 图中文字: Power loss:功率损耗 Initial point:初始点 Worst-case EoAP:最坏情况EoAP 这种方法意味着,最大漂移应当是在所描述的最坏情况下出现的。借助全新的M1H芯片,客户将能从数据表的规格范围中,选择最适用于其应用的参数。栅极信号中的寄生过冲和下冲不会影响漂移,无需从应用的角度考虑。因此,可以节省时间和精力。 请注意:在控制良好的栅极偏置电平下运行的应用,远低于数据表的最大限制,例如,+18V/-3V,在相同的开关周期数下,RDS(on)的变化幅度甚至更小。
除了其他关键的改进外,最近推出的1200V CoolSiC™ MOSFET,即M1H,还显示出了出色的稳定性,并降低了漂移现象的影响。
参考文献 [2] P. Salmen, M. W. Feil, K. Waschneck, H.Reisinger, G. Rescher, T. Aichinger: 一种新的测试程序,可实际评估 SiC MOSFET 在开关运行中的寿命终止电气参数稳定性;2021 IEEE 国际可靠性物理研讨会(IRPS)(2021 年) [3] 英飞凌:白皮书 08-2020:英飞凌如何控制和确保 SiC 基功率半导体的可靠性,第 11–21 页; [4] 数据表 FS55MR12W1M1H_B11 |