【导读】分析了功率电感饱和特性产生的原因,并且提出一个假设模型解释饱和特性与电感内部气隙宽度之间的关系并且由此说明软饱和特性和硬饱和特性的产生即由此关系决定。从电感的饱和特性出发通过建立内部设计的关键参数并由此得出最优化的设计选择,通过设计示例反映不同的设计出发点下对应的性能指标差异,并且通过分析电源电路上对电感平均电流和纹波电流的不同组合方式对电感损耗和温升的不同影响说明其分配关系对电感的性能表现重要性,并由此提示基于饱和特性要求的电感设计方式和对应用选型的优化方式。 引言
功率电感一般被宽泛理解为应用于功率转换电路的电感,实际用途常分为3种情况: 1.以扼制转换电流的纹波为目的的电感,更贴切的名称为扼流圈(Choke)。主要的需求是电感的感值能保持在较高的水平以应对电路工作过程中可能出现的施加在电感两端的最大电压·时间乘积(V·s或者 2.以磁通的磁场能量形式暂时储能以完成整个开关周期的电压转换,这种深度参与能量转换过程的应用更符合功率电感(Power inductor)的称呼。主要的需求是电感的储能能力能够达到电源开关周期内需要在电感和电容之间暂时寄存的能量,在稳态情况下这个数值是 3.以滤除电路的噪声电压为目的的电感,这种情况扼制的是噪音,一般叫滤波电感(Filter choke)。主要的需求是电感的阻抗能保持随频率的线性增长关系,适用滤波类型的电感的阻抗通常由感抗和等效电阻组成(串联等效模式)。虽然滤波对电感的频率特性更敏感,但是由于滤波线路常常就是电源线路,因此滤波电感往往依然是处于直流电流偏置的状态。
以上说明:伴随功率电感的应用都离不开通过电感的电流状态,除了基本的直流偏置,为了在整个工作周期各种电路瞬态情况下保证以上提到的应用要求,功率电感的饱和特性成为实际做电感设计和元件选型的关键评估项。功率电感的饱和特性在元件参数上指的是当电感电流增大时其感值逐渐衰落而降低的特性,从应用来看电感饱和时降低了的感值会直接影响其作用效能(典型表现为纹波电流增大),严重时则可能造成电路故障或者器件损坏。本文主要从:电感饱和特性的形成原因,基于饱和特性的电感设计,电源电路中对直流和纹波电流的分配,以及将电感的饱和特性和电流的直流与纹波分配相结合做优化选型的方法,这4个方面来讲述相关的原理与可操作方法。中间涉及一些模型与讨论,作为支持相关论据与方法的基础,最后给出示例作为参考。 1 电感饱和特性的形成原因 功率电感磁芯(软磁材料)的磁化-退磁过程通常描述为磁畴的壁移和畴转过程,磁材内包含了不同的磁化力矩和逆动特性的大小不一的磁畴,因此形成如B-H特性曲线的典型铁磁材料磁滞曲线。由于磁通密度B(或简称磁通)和磁场强度H(或称磁化强度)的关系是不规则的曲线,即使是在稳定的温度和固定频率下,由两者定义的磁导率
对于高磁导率的软磁材料而言,没有气隙的磁芯往往会很容易达到饱和状态,比如: Fig.1 NiZn铁氧体的B-H特性曲线(Ferroxcube 4A20材质,规格资料来自www.ferroxcube.com )
磁性材料存在饱和磁通密度的属性来源于材料内部空间能量密度的限制,以磁化过程的描述则通常解释为材料内部的磁畴终归是有限的,不管外部场强增加到多高其内部的所有可磁化单元均已完全磁极化而不能再感生出更多的感应磁场M。对于常用的MnZn Ferrite(锰锌铁氧体)和NiZn Ferrite而言,饱和磁通的范围大概在200~600mT之间,虽然存在不同的频率,不同的温度下饱和磁通数值不同,但是可以肯定的是,在高温(约1100~1300°C)烧结(Sintering)的铁氧体材料内部几乎无分布气隙,材料的饱和磁通有极限。为了增强铁氧体材料的饱和特性,将会在绕制电感的过程中从结构上做出气隙,代价是有效磁导率
作为对比,铁粉芯类(Iron powder)的材质饱和磁通往往能达到1T左右的水平,这里包含了含有各种绝缘包覆层以及成型胶合介质的铁基晶粒类型的铁粉与合金粉,比如FeSi Alloy, FeSiAl(Sendust), FeNi Composite, FeSiCr, Carbonyl等。虽然只是相对铁氧体磁芯提高了2~3倍最大磁通,但是相对其较低的磁导率水平(一般不超过150)而言,显然其能够承受的场强H增加了很多。作为参考,以下是部分磁性材质的参数对比(Tab. 1):
(*CODACA是深圳市科达嘉电子有限公司的注册商标,以下简称CODACA,详情请参www.codaca.com)
从以上对比中可以看到,在定义饱和点为初始磁导率衰减30%时,铁粉芯类材质的饱和速率(设定为
通常关于电感饱和特性的形成从成分构成上大致描述如此,但是缺乏合理的理论解释其电气特性原因,只能宽泛的归结为分布式气隙与结构式气隙,或者材质特性决定的。这里建立一个理论模型,作为解释与气隙尺寸形态以及相关饱和特性的基础:假设所讨论的磁性材质本体(body)成分是各向同性参数均一的理想情况(在实际生产工艺上比较接近),其内部局部位置的某个球形气隙(Air gap sphere)如下图(Fig.2): Fig.2 分布式气隙磁性材质内部某局部位置的球形气隙(近似模型)
选取顺磁通B方向的本体边缘侧某个区块(假想区块,如Fig.2中的dipole1),由于其磁通 其次,在磁偶轴线外部空间对应的球形气隙的球心O处所分布的(由假想磁偶dipole1所发射的)磁通数值相对磁偶中心处(在磁性材质本体内部)的磁通可以由电流环磁偶的轴线分布关系可得到( 当O处的分布磁通接近本体磁通 这个解释模型存在不可计量的其他杂项贡献,比如如上图(Fig.2)的非正对角度上的其他等效磁偶(dipole2)存在随角度偏移的贡献偏差,而且实际的气隙也难以定型为球形,因此详尽的计算难以实现。但是可以肯定的是:气隙的顺磁场方向间距尺寸(即气隙宽度)与实际气隙的有效率有直接关系,如本例中的球形气隙半径
为了确保电感对电路可能出现的最大电流保持足够的剩余感值,饱和电流被定义为感值随电流增加而衰减的敏感控制点,通过基于饱和点的电感设计可以达到确保感值不会遇到以上提到的因为气隙“消失”而呈现的感值衰落难于控制的情况。 2 基于饱和特性的电感设计 以电源转换电路为例,通常对电感的需求如以下清单所示(Tab.2): Tab. 2: 电感需求参数表示例
按照尺寸要求及电流的规格,预设这个电感是由扁平铜线绕制PQ磁芯而成,于是由这份清单先可以得到以下关键的设计参数: 其中:
关系式[4]中包含的磁路长度表达式:
设定电感饱和点为感值由初态随电流增大而跌落20%时,且其值等于最大电流处(此处即 根据结构和铁粉芯材质规格参数预设好 Tab. 3: 预设感值4.7µH时的磁导率和饱和点磁通 以目前的铁粉芯类材质的饱和特性和损耗特性为例,兼顾大饱和电流和低磁损的要求下,一般选择磁导率低于60和饱和磁通密度小于300mT的组合:磁导率越低,材质的抗饱和特性越好,表现为更低的饱和速率 Fig.3 兼顾大饱和电流和低磁损的要求下最佳的设计折中点选择示例(红色字体为优选组合) 以此4.7µH电感为例,最佳设计折中点初步选择在
Fig.4.a FeSi Alloy铁粉芯直流偏置曲线(CODACA-FeSi-26u,40u,60u,75u) Fig.4.b 铁粉芯单位体积损耗曲线(CODACA-FeSi-26u ,60u) 由于磁芯损耗 首先,在定义较窄的饱和点(比如此例中的20%感值衰减处)情况下,如图Fig.5(a)所示的两个B-H工作回路上,其对应原点的夹角的正切值对应其等效的磁导率,即 其次,对于常见的方波或者带上升下降边沿的近似方波开关信号,其频谱(如Fig.5 (b)中所示)主要成分介于
在以上前提下,直流偏置态的磁芯对应的损耗就由B-H特性曲线上对应的不同电流下的损耗做差运算近似:将最大电感电流 Fig.5 近似计算在DC-bias情况下磁芯的损耗:(a) B-H曲线示意 (b)方波的复频谱
对于磁芯已经测得的损耗 进一步由磁通和电流之间的关系: 在本设计示例中,电感电流最大值14A设定为饱和电流,平均电流10A设定为电源转换的目标电流值,其电流有效值*为: 基于以上方法得出按照电感的饱和特性而设计的电感其饱和电流已经考虑在规格范围内,即最大电流处电感的感值不低于由此定义的电感饱和电流值,同时其损耗也直接对应计算得出,在已知其热阻系数的情况下也可以直接评估温升。以下是在设计4.7µH电感时两组设计参数配置( Tab.4 初次设计的电感相关的损耗与温升超过预期的上限(ER: Equivalent Resistance,等效电阻) 基于此计算结果,目前的设计参数配置未能满足温升限制(<80°C)的目标;从损耗的构成上来看,主要的效率损失来源于磁芯损耗:因为定义的饱和电流14A和平均电流10A在理想情况下的纹波电流系数是: 3 电源电路中对直流和纹波电流的分配 如上提到的情况,虽然在实际电源中时常发生,比如在仅有电压反馈控制的开关电源内,如果缺乏诸如电流增益控制或者展频调制模式时,误差放大器以及PWM控制器将可能分配固定或者过多的开通时间并导致电感电流过量,又或者诸如PFC电路以及BTL(Bridge-tied Load)类的功放电路本身就工作在不同的电压或者负载电流状态,其输入或输出状态本身是一个较为宽泛的变动范围,则电感的最大电流将远离其平均电流。但是当考虑以储能为目的的功率电感时,比如直流BUCK或者BOOST应用时,合理的设置平均电流以及最大电流,对于优化电感的设计与性能有重要帮助;虽然工作电流与视在功率是大多数转换电路考虑的设计初衷,但是以效率和温升为衡量的性能指标来说,电源电路中的直流和纹波电流的分配需要从外围器件比如开关管,电感的角度增加考虑。目前MOSFET的导通电阻已经可以在较小的体积内实现较低的阻值(10mΩ左右)同时容纳较大的电流,如图Fig.6所示(Infineon OptiMOS3 IPD090N03L G E8177最大可 |