|
.车上遍布质检章,证明Volt制造时有严格的品控。 .电气布局便于整合新的模块和IC。 .加固性功能(如泡沫与胶带),适应高要求的汽车环境。大量的软件诊断功能,确定汽车的安全与可靠性。 有时候,工程师得到的任务不仅会挑战自己以往的经验,而且纯粹是种娱乐。这就有一个例子:UBM TechInsights的产品营销经理John Scott-Thomas与Munro & Associates的高级经理与“设计先知”Al Steier最近完成了一个拆解Chevy Volt插电式混动型汽车的工作,查看了这款车的秘密,以及设计人员如何在汽车内整合各种技术。通过对Volt三天的创造性拆卸工作,他们了解了有关该车的很多东西(见附文“汽车解剖分析”)。 电池块 288芯的Volt锂离子电池块,由四个排列成T字形的模块组成,置于后座下以及与前座的“通道”内。四个模块连接到汇流条,电池块触点上连接着一个安全断路器(图1)。
电池块被物理上分成多个包裹塑料壳的薄片,每个片内有两个电池芯。一个携有五通道冷却剂的散热片将两只电池芯分隔开来。电气上,三只电池芯为一组,互相并联,这样的96组再串联,从而使288只电池芯产生360V电压,容量为16 kWhr。为延长电池寿命,电池永远不会满充或完全放电,因此它只使用电池容量“中段”的9.4 kWhr。 LG Chem是电池的生产商,它采用了锂锰尖晶石化学类型,但GM已从美国Argonne国家实验室获得了钴化学电池的许可,这表明它可能在近期转换到镍锰钴电池。电池冷却液电路是Volt四个电路中的一个,每个都有自己的控制器和制冷模块。其它三个冷却循环分别用于内燃引擎,两个电机/发电机转换器,以及电力线插入充电器的电源转换器。 当电池工作温度低于最佳运行温度时,液体将电池加热到运行状态,然后对其做冷却以避免过热。即使汽车未开动,控制电路也会激活冷却循环,以防止在酷暑下电池过热,或寒冷天气下电池过冷。因此,当汽车并未使用时,也要将Volt接在它的外接充电器上,从而避免这些状况下耗尽电池电量。 电池块冷却循环采用的是软管夹连接,这表明该车是限量产生的汽车。大批量的生产会采用硬焊式连接。软管夹与每个电池块上都有三个质检员的印章,表明组装经过了仔细的检查,确保这个8000美元的Volt核心部件的质量与功能。 控制与监控 拆解表明,复杂的Volt电池块同样也有复杂的控制与监控,这也是整部车的特点。Scott-Thomas发现,汽车价值的40%在它的电子部分,特征是几乎有100只车载微控制器。大约1000万行代码用于控制这套电子组件,比波音787 Dreamliner的800万行控制代码还要多。 对于电池块,Scott-Thomas注意到,电池的长寿命是一个重要的目标。为此,制造商将电池块的温度波动调节在2°F之间,并对各个电池芯之间的充电作均衡,从而每个寿命周期都有相同的速率。控制软件还会考虑到制造的差异,以及老化中的其它变量。 例如,控制器会在充电时监控每个电池芯的电压。为确保每个电池芯都有相同的最大充电量,如果某个电池芯先充满,则该电池芯接一个电阻旁路,防止其过充,而其它电池芯继续充电。Scott-Thomas称:“控制与软件的水平难以估量”。汽车的控制器监控着电池块的电压与温度,每秒要做10次500个诊断,哪怕汽车处于停车状态。 电池接口与监控模块均装在电池块的前面。这个单元有四块橙红色监控PCB,表示内有高压,每个PCB用于一个电池块(图2)。占据这些PCB的芯片来自飞思卡尔、LG Chem以及意法半导体公司;LG Chem与意法半导体芯片采用了双极CMOS DMOS(扩散金属氧化物半导体)技术。中压电路板为蓝色,低压PCB为绿色。整个制造过程都有质量检查;每个电池连接器上都有多名质检员的质检章。
保持电池电路的正常是困难的工作;系统必须在每个电池芯的顶部测量数微伏电压,而电池芯可能对地有几百伏特电压。这个工作需要注意PCB布局、走线设计、接地面,以及电压隔离技术。Scott-Thomas发现,汽车的设计是一个进行中的工作,具有灵活性和模块化特点,这样便于引入新的电池芯、电池块、电路与控制。 拆解团队意外地在Volt中发现了一个与电池有关的模块。除了驾驶员边上仪表板上的标准车载诊断端口以外,团队还在副驾座椅下发现了一个密封并填充的模块。这个模块存储着电池与混动式运行的诊断代码,并有一个连接口,技师可以用专用电缆连接,访问模块。 为系统充电 除了可再生刹车能量以外,电池块还存储着电网充电的能量,采用的是110V充电器,或可选220V充电站(用于更快的充电),后者要由持证电工安装。Lear Corp是家用110V充电器的制造商,充电器的功率电路和软件都足够完备,如果用户将其插入了一个接地不良电路,充电器不会工作。充电器的继电器和监控电路板可与电池块和车载监控系统通信。如前所述,为电池充电的车载交流电源充电主系统有自己的冷却循环。 充电器插入左前挡板门后的一个标准插座。Scott-Thomas称,通过这个接口单元的拆卸,看到了GM很注意设计的细节。生产商对高压元件都做了胶带和泡沫绝缘,如电容器和共模扼流圈,以求获得高振动环境下的健壮性和保护,绕组都很强健、稳定,并有机械冗余。 Steier在充电器结构中发现了一个令人费解的特性:尽管充电插座在左档板上,但其馈入的充电转换器却在右前灯下。同样,汽车引擎的控制器在左侧,而引擎却在右侧。与功能同侧结构相比,这种方式增加了接线的重量。 Volt的大脑 在类似于汽油汽车变速箱的电机和发电机外壳上,有一个液冷转换器模块,用于为牵引电机提供电池的电能。通入该模块的黄色高压线有继电器开关通断,以确保安全;Steier指出,模块盖子本身也是一个安全电路断路器。Scott-Thomas称里面是最靠近汽车大脑的东西(图3)。
Hitachi PCB上有四只32 bit飞思卡尔Qorivva微控制器。Scott-Thomas首先注意到有大量可用的板面,能用于未来的修改,可改电路也可以增加电路。四个控制器之一作为主控器,用各种输入数据来确定最高效的状态,这些输入数据包括车速和轮速;加速度或油门;刹车;以及电池状态(图4)。举例来说,这些决策可能包括:牵引电机与内燃机发电机所使用的输出组合,何时激活可再生刹车,以及恢复能量的程度。
主监控器是四只微控制器中最大的,它有3M字节闪存,占用了一半的片芯面积。控制器还会尽量让电机工作在较低的转速下,以获得更高效率。其它三只飞思卡尔微控制器用于控制牵引电机;内燃机引擎的驱动发电机,以及离合器行星齿轮组,如有必要,IC引擎也可以加入。 其它电路 除了是装在混动型车内以外,剩下的Volt电路与普通的最新汽车没有什么差别(图5)。一个气冷的dc/dc转换器,PCB来自TDK,还有一只瑞萨的微控制器,代替了交流发电机提供12V,用于标准汽车系统的工作,如门、灯、导航和音响,以及为辅助12V电池充电。
拆开中央仪表台,露出了一个LG的通信模块PCB,上面有一只飞思卡尔存储控制器,采用Spansion闪存。Scott-Thomas称这些信息娱乐用电路板上元器件很少,意味着有大量空余空间,而不需要大量的处理能力;因此,单个芯片上集中了多个功能。另外,前面板上采用电阻式触摸开关,互相之间有多余的空间,可防止驾驶员误选不正确的功能。 随着客户获得该车的体验,未来几年这种插电式混动平台的发展方式(与速度)都是有意思的看点。 附文1:汽车解剖分析 在开始为感谢Munro & Associates做拆解前,该公司高级经理Al Steier阅读了他能找到的有关该车的所有相关信息。对于混动车和电动车,一个基本步骤是找到确保高压线安全的紧急断电开关,他将其拨掉,再固定到自己的工具箱中。在部件的拆解前后,他会从各个角度拍摄照片,并且作为推测材料与制造工艺的一部分依据。Steier确定了PCB板级的元器件及其厂家。如果无法从元器件的公开数据获得存储容量信息,则会去掉IC和ASIC的覆盖层,显示出其容量。 Volt与销售商提供的其它新车一样,都加了满箱的油。拆解团队在动手拆车以前,让汽车耗干了锂离子电池,但汽车软件会起动汽油引擎,以防电池的深度放电。拆解团队决定连油箱也耗尽,他们打开了灯、收音机和其它系统,消耗着12V电池。高压系统整夜都在为电池充电,因为系统软件不允许电池彻底放电,但只会充到够汽车行驶35英里的水平。然后,由一家专做电动车的公司,在端子之间跨接一只功率电阻,将电池耗尽。 Steier以前曾参加了丰田Prius混动汽车项目,发现了Prius与Volt之间的差异(参考文献A)。例如,作为一辆插电汽车,Volt有一个用于充电的额外转换器模块。Volt采用的是锂离子电池,而Prius使用的是镍氢电池。对于混动车的发热控制,插电式Volt采用了液冷,而Prius是气冷。此外,在电子元器件的供应方面,Volt似乎有更广泛的供应商;而Prius主要使用丰田技术的电子元器件。
已同步至 lfcx的微博 |
|关于本站|小黑屋|Archiver|手机版|无线电爱好网 ( 沪ICP备13030311号-1 ) |申请链接 | 网站事务: 技术支持: 广告联系:
GMT+8, 2013-12-6 09:02 , Processed in 0.107251 second(s), 44 queries .
Powered by Discuz! X3 Licensed
© 2001-2013 Comsenz Inc.